Infragravity waves and sea level

(and « usual waves », roughness, SSB ...)

Fabrice Ardhuin, Bertrand Chapron (Lab. Oceano. Spatiale, Ifremer, France)

and Jérome Aucan (LEGOS, IRD, New Caledonia)

1) The big picture

Atmosphere and oceans interact through waves
Waves define the surface roughness
SWOT will measure altimetry + roughness

Can we understand roughness?

does it have a dynamical effect on the submesoscale evolution?

2) Specific objectives

One overlooked aspect of high-resolution altimetry are the surface gravity waves with 5 – 50 km wavelength. These are mostly generated at shorelines by shorter ocean waves.

The average height of these « infragravity waves » is of the order of 4 to 8 mm, and can exceed 4 cm during storms.

If the target accuracy at

10 km wavelength is 1 cm^2/ (cyc / km)
then IG waves account for that

10% of the time off the U.S. West Coast.
And 0.1 cm^2/ (cyc / km)
is exceeded and 80% of the time.

Another question is:

Can we model and understand high resolution roughness (mss) ? (e.g. Kudryavtsev et al. JGR 2012)

3) Phase-A SWOT issues

Are the current error budgets realistic?

From our preliminary analysis IG waves will often be a large source of error if the target is 1 cm 2 / (cyc / km) at L=10 km wavelengths, especially off west coasts. These error probably do not matter anymore for L > 30 km.

requirements for high-resolution data

- shorter but higher swell waves typically give a standard error of the order 2 mm on the mean sea level averaged over a 10 km by 10 km square.
- roughness modulation on swell scales may cause some non-trivial correlation with the orbital velocities and thus a phase shift in the measured KaRIN signal
- Combining roughness and elevation will be critical for estimating currents at the highest resolutions.

For all these reasons there is a need for understanding the signal at sub-pixel resolutions over the oceans.